Data Analytics with R Training

Data Analytics with R Training

Course Length:
Delivery Methods:
Course Topics
  • Learn the language basic of R.
  • Work with loops and conditionals.
  • Work with built-in datasets.
  • Work with visualization.
  • Work with statstical modeling with R.
  • Work with clustering and classification.
  • Learn about R and big data.
Course Overview

R is a very popular, open source environment for statistical computing, data analytics and graphics. This Data Analytics with R Training class introduces R programming language to students. It covers language fundamentals, libraries, and advanced concepts and advanced data analytics and graphing with real world data.

Course Outline
  1. Day One: Language Basics
    1. Course Introduction
    2. About Data Science
      1. Data Science Definition
      2. Process of Doing Data Science
    3. Introducing R Language
    4. Variables and Types
    5. Control Structures (Loops / Conditionals)
    6. R Scalars, Vectors, and Matrices
      1. Defining R Vectors
      2. Matricies
    7. String and Text Manipulation
      1. Character Data Type
      2. File IO
    8. Lists
    9. Functions
      1. Introducing Functions
      2. Closures
      3. lapply/sapply Functions
    10. DataFrames
    11. Labs for All Sections
  2. Day Two: Intermediate R Programming
    1. DataFrames and File I/O
    2. Reading Data from Files
    3. Data Preparation
    4. Built-in Datasets
    5. Visualization
      1. Graphics Package
      2. plot() / barplot() / hist() / boxplot() / scatter plot
      3. Heat Map
      4. ggplot2 Package ( qplot(), ggplot())
    6. Exploration with Dplyr
    7. Labs for All Sections
  3. Day 3: Advanced Programming With R
    1. Statistical Modeling With R
      1. Statistical Functions
      2. Dealing with NA
      3. Distributions (Binomial, Poisson, Normal)
    2. Regression
      1. Introducing Linear Regressions
    3. Recommendations
    4. Text Processing (tm package / Wordclouds)
    5. Clustering
      1. Introduction to Clustering
      2. KMeans
    6. Classification
      1. Introduction to Classification
      2. Naive Bayes
      3. Decision Trees
      4. Training Using Caret Package
    7. Evaluating Algorithms
    8. R and Big Data
      1. Hadoop
      2. Big Data Ecosystem
      3. RHadoop
    9. Labs for All Sections
Class Materials

Each student in our Live Online and our Onsite classes receives a comprehensive set of materials, including course notes and all the class examples.

Class Prerequisites

Experience in the following is required for this R Programming class:

  • Basic programming background.
Request a Private Class
  • Private Class for your Team
  • Online or On-location
  • Customizable
  • Expert Instructors
Request Pricing