Building a Serverless Data Lake on AWS (AWS114)
Course Length: 1 day
Building a Serverless Data Lake on AWS is a one-day, advanced-level bootcamp designed to teach you how to design, build, and operate a serverless data lake solution with AWS services.

Register or Request Training
- Private class for your team
- Live expert instructor
- Online or on‑location
- Customizable agenda
- Proposal turnaround within 1–2 business days
Course Overview
Building a Serverless Data Lake on AWS is a one-day, advanced-level bootcamp designed to teach you how to design, build, and operate a serverless data lake solution with AWS services. The bootcamp will include topics such as ingesting data from any data source at large scale, storing the data securely and durably, enabling the capability to use the right tool to process large volumes of data, and understanding the options available for analyzing the data in near-real time.
This course is intended for solutions architects, Big Data developers, data architects and analysts, and other hands-on data analysis team members.
Course Benefits
- Collect large amounts of data using services such as Kinesis Streams and Firehose and store the data durably and securely in Amazon Simple Storage Service.
- Create a metadata index of your data lake.
- Choose the best tools for ingesting, storing, processing, and analyzing your data in the lake.
- Apply the knowledge to hands-on labs that provide practical experience with building an end-to-end solution.
Delivery Methods
Authorized AWS Training
Webucator has partnered with an Authorized AWS training delivery partner to offer official AWS courses utilizing Amazon Authorized Instructors.
Course Outline
- Key Services that Help Enable a Serverless Data Lake Architecture
- A Data Analytics Solution that Follows the Ingest, Store, Process, and Analyze Workflow
- Repeatable Template Deployment for Implementing a Data Lake Solution
- Building a Metadata Index and Enabling Search Capability
- Setup of a Large-Scale Data Ingestion Pipeline from Multiple Data Sources
- Transformation of Data with Simple Functions that Are Event Triggered
- Data Processing by Choosing the Best Tools and Services for the Use Case
- Options Available to Better Analyze the Processed Data
- Best Practices for Deployment and Operations
Class Materials
Each student receives a comprehensive set of materials, including course notes and all class examples.
Class Prerequisites
Experience in the following is required for this AWS class:
- Good working knowledge of AWS core services, including Amazon Elastic Compute Cloud (EC2) and Amazon Simple Storage Service (S3).
- Some experience working with a programming or scripting language.
- Familiarity with the Linux operating system and command line interface.
Have questions about this course?
We can help with curriculum details, delivery options, pricing, or anything else. Reach out and we’ll point you in the right direction.
